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Asymptotic Expansions for Constant-Composition 
Dew-Bubble Curves Near the Critical Locus I 

J.  C. R a i n w a t e r  2 

Explicit functional representations are developed for constant-composition dew 
and bubble curves near critical according to the modified Leung-Griffiths 
theory. The pressure and temperature increments AP = P -  Po and A T =  T -  To, 
where c denotes critical, are linearly transformed to new variables AP' and A T'. 
In the transformed space, the coexistence curves are no longer double-valued 
and can be expressed as a nonanalytic expansion, where the coefficients are 
functions of the critical properties and their derivatives. A similar asymptotic 
expansion is developed for A T  in terms of the density increment Ap = p -  po. In 
the approximation that the critical exponents c~ = 0 and/~ = �89 the critical point 
in temperature~tensity space is shown to be a point of maximum concave 
upward curvature, rather than an inflection point as previously conjectured. 

KEY WORDS: asymptotic expansions; binary mixture; concave curvature; 
critical region; dew bubble curves; Leung-Griffiths model; linear transforma- 
tion; vapor liquid equilibrium. 

1. I N T R O D U C T I O N  

Our  unders tand ing  of the vapor - l iqu id  equi l ibr ium (VLE) of b inary  

mixtures in the near-crit ical region has improved substant ia l ly  in recent 
years. Tradi t ional ,  analytic equat ions  of state and  phase equi l ibr ium algo- 

r i thms have been inaccurate  or have failed to converge near the critical 
locus. However,  the model  of Leung and  Griffiths [1 ]  has provided the 

correct mathemat ica l  description of mixture thermodynamics  near  the 

critical state, including nonclassical,  a l though "effective," critical exponents.  
The model  as modified by Moldover ,  Rainwater,  and  co-workers [ 2 - 7 ]  

1 Paper presented at the Tenth Symposium on Thermophysical Properties, June 20-23, 1988, 
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has proven efficient and successful for correlation of the VLE surfaces of a 
wide variety of binary mixtures. 

Specific calculations of, for example, a dew-bubble curve along an 
isopleth (locus of constant composition) in the pressure (P)-temperature 
(T) or temperature-density (p) planes have required numerical solutions to 
sets of parametric equations [2-7]. To our knowledge, the explicit mathe- 
matical representations of dew-bubble curves, i.e., P as a function of T or 
T as a function of p, have not been examined. The objective of the present 
paper is to derive such explicit representations from the modified Leung- 
Griffiths formalism in terms of asymptotic expansions about the mixture 
critical point. 

The typical dew-bubble curve has a maximum pressure (maxconden- 
bar or cricondenbar) point and a maximum temperature (maxcondentherm 
or cricondentherm) point close to the critical point. Accordingly, the func- 
tions P(T) and T(P) are double-valued, as are similar relations between 
AP = P -  Pc and A T = T -  To, where c denotes critical. We show that this 
problem can be averted by a linear transformation from AP and AT to new 
variables AP' and A T', defined in terms of certain characteristic directions 
in thermodynamic space [8]. 

Temperature-density representations have in general been accorded 
more attention, and various ancillary equations, e.g., Eq. (B1) in Ref. 6, 
are commonly used. However, these forms do not correctly locate the 
singularities at the critical point and simultaneously account for retrograde 
condensation. In this work, from the expansion of AT' as a function of 
AP', a similar expansion for AT in Ap = p -  Pc is constructed. As well as 
motivating a more fundamentally correct ancillary equation [9], this 
analysis demonstrates that the dew-bubble curves have intervals of both 
convex upward and concave upward curvature and shows the relationship 
of the critical point to these regions of different curvature. It is also shown 
that the change of curvature is a consequence of nonclassical critical 
exponents. 

Our treatment has some similarities to that of Charoensombut-amon 
and Kobayashi [10], who expand isothermal dew bubble curves about the 
critical point in an explicit function of P versus mole fraction (x). However, 
the coefficients of their expansion are adjustable parameters that are fit to 
the data of each isotherm separately. In contrast, in our treatment we 
derive expressions for the coefficients in terms of Leung-Griffiths 
parameters and, primarily, the critical locus and its derivatives. If the com- 
ponents are not too dissimilar, the asymptotic forms of the dew-bubble 
curves and values of the coefficients may be predicted from the pure-fluid 
coexistence properties and the critical locus. 
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2. THE MODIFIED LEUNG-GRIFFITHS THEORY 

The subject of our discussion is a normal (i.e., nonazeotropic) binary 
mixture with a continuous critical line from one pure fluid critical point to 
the other and with no liquid-liquid immiscibility. Our convention is that 
fluid 1 is the less volatile and fluid 2 is the more volatile component and 
that x = 1 is pure fluid 2. We define a coordinate system (~, t) in terms of 
"field" variables [8], by defifiition variables that are equal for coexisting 
vapors and liquids, as follows: 

e~l/RT 
- K ( T )  e ~2/Rr + e ~`/l~r (1) 

T -  To(~) 
t = (2) 

Tc(~) 

Here /~i is the chemical potential of fluid i and R is the gas constant. 
Since ~q -+ - ~  for pure fluid 2, and vice versa, ff = 0 when x = 1 (pure 
fluid 2) and ~= 1 when x = 0  (pure fluid 1). It can be shown that K(T) ,  
assumed constant in earlier work [1-5], can be generalized to a tem- 
perature-dependent function without altering the formal expressions for P, 
T, p, and x. Furthermore, if To(x) is monotonic, a particular K ( T )  can be 
shown to exist such that x = 1 - ~  exactly along the critical locus. 

From data for dew-bubble curves along isopleths, the critical locus 
may be found by constructing the envelope of the dew-bubble curves in 
P - T  space. Then to each value of x (or ~) there corresponds a Pc and To, 
from which t is defined as in Eq. (2). Loci of constant ~ are given by 

[l +C3(~)(-t)2-~+C4(~)t-t-Cs(~)t2q-C6(~)t3 ] (3) 
T To(~) 

and the coexisting densities along such loci are given by 

p = p~(~)E1 _ C l ( ~ ) ( - t )  p + C2(~)t] (4) 

where plus refers to liquid, and minus to vapor. 
The critical exponents ~ and/~ that appear in the above equations are 

zero and 0.5, respectively, according to classical equations of state. Their 
actual limiting values [11] are 0.110 and 0.325, but for an accurate fit over 
a larger range around the critical locus, the "effective" values 0.1 and 0.355 
are preferable [3]. 

The coefficients Ci(~'), i =  1,..., 6, for ~ = 0  and ~ = 1 are determined by 
fitting pure-fluid coexistence properties. The coexisting compositions are 
given by 

[0 (~ , t )  Q ( ~ , 0 ) / l ( ~ , t ) J }  (5) 
x j = ( 1 - - ~ )  {1--~ L ~ P~ 
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where j =  I (liquid) or v (vapor), and 

1 8 P  d 1 
Q(~', t) = ~ [(~--~-~) + Tr ~-~ (T---~) t  (1 + t) (~t  P ) ~ ]  (6) 

For the choice x = 1 - ~ on the critical locus, /7(~, t = 0) = 0. /4 is a 
function of chemical potentials but, in practice, is modeled by 

H(~, t) = CH(1 + Cz~) tTr -~ (7) 

where CH and Cz are adjustable parameters. (This was presented 
erroneously in some previous work [4-6] . )  

Two concepts central to the present work are ~2, a measure of the 
relative width of a dew-bubble curve as first introduced by Onuki [12], 

~2(~) = lim 6x/(Sp/p~) 
t ~ O  

= [po(~)]_l ~(1 - ~ )  0 ( 5  t = 0 )  

where 5x=xt-Xv and 6p=pz-pv for coexisting phases (not to be 
confused with Ap=p-pc along an isopleth) and ~2m, a measure of the 
dissimilarity of the two components, 

a2m = max 1~21 (9) 

With our conventions, ~2 is negative for most normal mixtures. As 
already stated, we can require that x =  1 -  ~ on the critical line. C4(~) 
cannot be derived rigorously, but for mixtures for which ~2m ~ 0 . 2 5 ,  it has 
been found empirically that, for 3 ~< i ~< 6, 

c~(r = c~(o) + r  Ca(O)] (lo) 

i.e., a linear interpolation. This implies that loci of constant ~ form a set of 
parallel curves terminating at the two vapor pressure curves; cf. Fig. 1 in 
Ref. 4. Therefore, if the components are not too dissimilar, the limiting 
ratio of composition change to density change across the phase boundary 
can be predicted from the slopes of the vapor pressure curves and the 
values and derivatives of the mixture critical parameters. 
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The expressions for Cl and C2 are somewhat more involved: 

Cl(O) -1- ~ r c l ( 1 ) -  Cl(O)] 
C l ( ~ )  = (11) 

1 + Cx(1 + Cy~) I~(C)t 

C2(~) = C2(0) + ~ [C2 (1 ) -  C2(O)l + CR#(I - ~') (12) 

where Cx, Cy, and CR are additional adjustable parameters; specific exam- 
ples are given elsewhere [4~7]. For 0~2m > 0.25, a sixth parameter is used 
[7] which allows x on the critical locus to deviate from 1 -  ~, but this is 
not considered here. 

3. THE LINEAR TRANSFORMATION 

We make the approximation in this work that the critical locus is 
linear in the vicinity of the mixture critical point, i.e., that Po and Tc are 
linear functions of x, and consequently, Pc is linear in To. This condition 
is, of course, not true in general, but is a good "local" approximation over 
the small range of ~ required for a relatively narrow dew-bubble curve, and 
simplifies the mathematics while retaining the most important general 
features of the analysis. For some mixtures, e.g., nitrogen + oxygen [6], the 
critical locus is, in fact, nearly linear. 

The transformation is 

A P ' = A P -  AT dPc (13) 
dTc 

(~?p) i (14) A T ' = A T - A P  ~ c,t=o 

where, from Eqs. (2) and (3), 

- = y [ 1 + c 4 ]  (15) 
~,t=o ~ 

and the ~ dependences of Pc, To, and C4 are suppressed. A geometrical 
interpretation of AP' and A T' is given in Fig. 1; AP' is the vertical distance 
from a (P, T) point to the sloping critical line, and AT' is the horizontal 
distance from that point to a tilted axis parallel to the constant-~ locus at 
the critical point. 

The dew bubble curve in transformed space is shown in Fig. 2. To 
leading order, it resembles a pure fluid temperature~lensity coexistence 
curve as described by Eq. (4). 
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Fig. 1. A constant-composition dew-bubble curve (schematic) 
in the critical region (solid curve), with the locus of constant 
(broken line) and the critical locus (dashed line). 

362 Rainwater 

Fig. 2. The dew-bubble curve, locus of constant ( (AP' 
axis), and critical locus (AT' axis) in the transformed space 
(schematic). 
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4. EXPANSION OF AT' IN TERMS OF AP' 

As shown below, the expansion of the transformed dew-bubble curve 
in Fig. 2 has the form 

A T ' =  +_a I JAP'IP +a2 IAP'I2# +_a3 lAP'[ 3[~ 

+ a  4 IAP'I 1 ~+as(AP' )+ ... (16) 

where plus refers to liquid, and minus to vapor. We first construct the 
inverse transformation 

d P c A T , ) / i 1  dPc(c3p, ] 1] (17) 

A T = F A T '  + AP' c~P -~ 1 )~-~ \ ~-~); (18) 
k 

The mixture under analysis has the composition Xo and a critical point at 
~o = 1 -  Xo, and we define A~ = ~0-  ~. In Figs. 1 and 2, ~ increases to the 
right, and x to the left. From Eq. (18), the relation x = 1 - ~ on critical, and 
the presumed linearity of the critical locus, we find that 

A( = - A T ' / T 1  (19) 

dx - ~-~-~ \ ~ / ~  J (20) 

Furthermore, we find to leading order that 

t = AP'/P 1 

OP 

(21) 

(22) 

This is an approximate relation which assumes linearity of constant-( loci 
or, in effect, neglects the terms involving C3, C5, and C6 in Eq. (3). It is 
sufficient for deriving the first two terms in Eq. (16). 

We first consider the liquid side or bubble curve. From Eqs. (4)-(6) 
and (8) 

x , =  1 - ~ -  ~.{ - C l ( - t ?  + c~( - t ) '~+  o ( - t )  3~ + o ( -  t ) l -~  + o ( t ) }  

(23) 

Starting from the critical point at x o and Go, we lower ~ by an amount 
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A~ along the critical locus, so x = Xo + A~, and then decrease t from zero 
until the original Xo is recovered, in which case 

A~ = -c~2{C1(-t) ~ - C ~ ( -  t)2~ + ...} (24) 

with the understanding that e2 and C1 are evaluated at ~ = ~o-A~. To 
leading order 

A~ = -c~2([o) C,(~0) ( - t) ~ (25) 

and from Eqs. (16), (19), and (21), 

al = ~2 C1 T1 P1 ~ (26) 

where all quantities are evaluated at ~ = ~0. With our sign conventions, al 
is negative as it must be according to Fig. 1. 

To derive the next term, in Eq. (24) we expand e2(~0-A~) and 
C1(~0 - Aft) in a Taylor series. We then iterate by replacing A~ on the right- 
hand side by its leading-order expression, Eq. (25). In converting to AT' 
and AP', we must also consider the [ dependence of P1, through Tc, in 
Eq. (22). The end result is 

d~2 dC1 2 2 [~ dTc 7 
a2 = -o~2C21+o~2-~C2 +o~2C1---~+o~2C1 rc dx j T1P1 211 ( 2 7 )  

This procedure can in principle be extended to any desired order, although 
the mathematical expressions rapidly become more tedious [-13]. The form 
of the last three terms of Eq. (16) is evident from Eq. (23), and/~ ~ �89 while 

is very small [the difference between 2 and 2 - e is not statistically signifi- 
cant when fitting vapor pressure curves to Eq. (3)]. Therefore, the last 
three terms are all effectively of the same order. 

There are several uses for our linear transformation. First, VLE data 
can be checked to see that they form a smooth, continuous curve in the 
transformed space. The mixture critical point can be located with greater 
precision. Upon estimating C~ and C4 of the pure fluids from coexistence 
data or a Reidel parameter correlation [14], or using "default" values 
C1 = 2 and C4 = 6, and estimating (or neglecting) Cx, Cr, and CR, the 
leading-order amplitude a~ and critical locus can be checked for mutual 
consistency. Nearly "ideal" mixtures with very small differences between 
pure-fluid Pc and To, and thus possessing extremely narrow dew-bubble 
curves, can be better analyzed in AP'--AT'  space by expanding the AT' 
scale; examples are carbon dioxide+nitrous oxide [15], n-butanol+ 
/-butanol [ 16 ], and perfluorobenzene + perfluorocyclohexane [ 17 ]. Finally, 
these results may prove useful in development of rapidly converging VLE 
algorithms for classical equations of state near the critical locus. 
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5. EXPANSION OF AT IN TERMS OF Ap 

A schematic temperature-density plot for a normal binary mixture is 
shown in Fig. 3; see also similar plots for actual mixtures in Refs. 2-6. The 
pure-fluid curves, at top and bottom, obey Eq. (4) for i f=0  or ~= 1, 
whereas the mixture isopleth is skewed and the critical point does not 
coincide with the maximum temperature or maxcondcntherm point. 

An important result of this work is a proper understanding of the 
mathematical behavior near the critical state. Similarly to Eq. (16), 

AT=b1Llp+b2(xJp)2+b3(Llp)3+b4 IApl(~-~ ' ) / '+b5 I A p l l / ' +  . . .  (28) 

where, within the assumption of a locally linear critical locus and Eq. (10) 
or linear interpolation for C4, the coefficients bi can be expressed in terms 
of the critical parameters and their derivatives. Again, we derive only the 
first two coefficients here. 

We consider, as before, a lowering in ff from Co by an interval A~, 
followed by a lowering in t from zero such that x = x  o according to 

, I / I 
I \ 

P 

Fig. 3. A constant-composition dew-bubble curve (solid 
curve) in temperature~tensity space (schematic, exagger- 
ated), with the critical locus (dashed curve) and pure-fluid 
coexistence loci (broken curves). The dew-bubble curve 
has two points of inflection at A and B which bracket the 
critical point C. 
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Eq. (23). The density change Ap is expanded in t from Eqs. (4) and (24) 
and then expressed in terms of AP' with Eq. (21); to leading order 

[ <l( Ap=C, Pc+~2 d { J \ -  P1,] (29) 

and 

ar at '  ( ae')  
T1 g2C1 -- P1 J (30) 

We replace AT' by AT according to Eq. (18), where AP' is higher 
order in t than A T' and, for the present purposes, may be neglected. We 
also replace AP' by Ap according to Eq. (29). Comparison with Eq. (28) 
then yields 

dTc o~2 
bl = - dx dpo (31) 

p c  q- 0~ 2 - -  < 

Our expansions, including nonanalytic terms, may in principle be 
extended to any desired order. We expand Ap and A{ in terms of t, then 
iterate as necessary to get A{ in terms of Ap, and replace A~ by AT by 
means of Eqs. (19) and (18). The end result for b2 is 

b2=aL P ~  ~'~-~ +~ <' 
dx 

(32) 

A separate analysis of liquid and vapor sides shows that bl and b 2 are the 
same for liquid and vapor. 

The expressions for the higher bi rapidly become more tedious [13]. 
But to understand the shape of the T-p dew-bubble curve, we need only 
a qualitative analysis of the terms through b5. First, for practical purposes 
/~ ~ �89 and ~ is very small, so 

1-c~ 
/? ~ ~3  (33) 

In other words, even with the highest-quality VLE data, it probably is not 
possible to distinguish statistically among the third, fourth, and fifth terms 
of Eq (28), which we therefore can rewrite as 

AT,~ b~ zip + b2(Ap) 2 +/)3(zip) 3 ~- . - .  (34) 
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where 

Second, from Eq. (4), at 
tions 

b5 

b, 

5 3 = b 3 4- b 4 4- b 5 (liquid side) 

= b3 - b4 - b5 (vapor side) (35) 

the pure-fluid limits we must have the condi- 

= - Tc(C~ Pc) -~l/p) (36) 

= b 2 = b 3 = b 4 = 0 (37) 

Equation (37) is obeyed by b 1 and b2 according to Eqs. (31) and (32), since 
c~ 2 = 0 in the pure-fluid limit. 

Third, the signs of b 1, b2, and/~3 determine the shape and curvature 
of the T p  dew-bubble isopleth. By our conventions, for most normal 
mixtures both dTo/dx  and e2 are negative and pc> l~2 dpc/d(l ,  so from 
Eq. (31), bl is negative. 

Since both e2 and the variation of Pc with ( are relatively small, the 
first two terms in the numerator of Eq. (32) usually dominate. Hence, the 
sign of b2 is opposite from the sign of [62-~2(de2/d~)]. If we utilize 
Onuki's (somewhat crude but instructive) approximation that 

~2(~) ~ ~c~(1 - ~) (38)  

where ~c is a negative constant, we find that [ ~ 2 -  o~2(do'~2/d~)] is negative, 
and therefore b2 is positive, for 0~<~<1 if ~c> -1 ,  whereas if ~c< -1 ,  
then b 2 is negative near ~ = 1, i.e., near the less volatile component. Since 
Ot2m = --~c/4, it follows that b 2 is everywhere positive for ~2m <0.25 and 
near the more volatile component for all mixtures. 

At the pure limits,/~3 is negative on the liquid side and positive on the 
vapor side. We expect this behavior to persist into the mixture, so that AT 
is always negative for sufficiently large lap]. Combining these results, we 
find that the curvature of the dew-bubble curve is typically concave 
upward at the critical point but convex upward away from it, and there are 
two inflection points A and B where the curvature switches, as shown in 
Fig. 3. At the critical point, d 3 T / d p  3 is discontinuous and d2T/dp 2 reaches 
its maximum value. The critical point on a T - p  dew-bubble curve is there- 
fore the point of maximum concave upward curvature, and not an 
inflection point as has been conjectured previously [-18]. In the classical 
limit, ct = 0 and/~ = �89 s o  b 4 and b5 would combine with b2 rather than b3 
in Eq. (28), and in most cases a change in sign of the curvature would not 
o c c u r .  

This region of concave upward curvature, a manifestation of nonclassi- 
cal critical exponents, is most easily seen in mixtures of highly dissimilar 
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fluids near the more volatile component, where b 2 is largest. Good exam- 
ples are the experiments of Kay and co-workers on ethane+ n-heptane 
[18], ethylene + n-heptane [19], ethane + benzene [20], ethane + cyclo- 
hexane [21], and propane + n-octane [22], as well as the measurement by 
Magee et al. [23]~ of a 5.31% solution of propane in methane. The latter 
authors find that the critical point is approximately in the middle of the 
concave upward interval, in agreement with our analysis. 
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